首页毕业论文大数据基于自适应光学的双光子系统的研究
isms_Z7rxRHoU

文档

14150

关注

0

好评

0
DOCX

基于自适应光学的双光子系统的研究

阅读 820 下载 0 大小 7.92M 总页数 0 页 2026-01-13 分享
价格:¥ 4.00
下载文档
/ 0
全屏查看
基于自适应光学的双光子系统的研究
还有 0 页未读 ,您可以 继续阅读 或 下载文档
1、本文档共计 0 页,下载后文档不带水印,支持完整阅读内容或进行编辑。
2、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
4、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。
摘要摘要双光子荧光显微成像技术是开展微观生命科学研究的重要手段和工具,使用该技术可以观察生物体内的精细结构、动态追踪生物体内组织、细胞、细胞核、蛋白、小分子等不同尺度的生命活动过程。其中,研究深层组织高时空分辨率荧光显微成像技术,是当前成像领域一个前沿问题。由于生物组织通常是非透明、非均匀结构,激发光和发射荧光在生物组织内传播时均会由于折射、散射、吸收等作用使得光波波前发生明显畸变,使得成像质量较差。借助自适应光学技术可对上述经由生物组织传播产生的波前畸变进行实时探测和精确校正,从而提升激发光照明和发射荧光成像的空间分辨率和深度。本文主要围绕基于自适应光学的双光子显微成像系统进行研究,主要研究内容包括如下:1,研究了双光子显微成像技术理论,对双光子显微成像的物理机制、双光子显微成像系统的组成、成像特点以及系统优化的基本方法进行详细分析,为后续光路的设计提供理论依据。另外,通过对成像特点的分析,利用自适应光学技术进行像差校正,从而提高双光子显微成像的分辨率以及探测深度。2,研究了自适应光学的原理,推导出了前十五个Zernike多项式以及在光学波前误差中的含义,并且用matlab对前十个Zernike多项式进行仿真。当利用Zernike多项式定义波前时,通过对PV值和RMS分析,得出在自适应光学中,通常用RMS来表征波前像差,RMS越小,自适应闭环效果越高。3,设计了一套基于自适应光学的双光子显微成像系统,在上面的理论基础上,首先对照明光路用光学仿真软件Zemax进行仿真。之后用点列图分析方法对光路进行分析,在整个扫描视场内,均能达到衍射极限。其次,在进行探测光路的设计时,要使得荧光最大限度的被探测设备收集。另外,分光源模块、自适应模块、二维扫描模块、缩扩束模块以及荧光收集模块分别介绍了系统中所用的关键器件以及性能参数。4,搭建了一套基于自适应光学的双光子显微成像系统,从获得红光准直光源、哈特曼标定、照明光路搭建、显微物镜调节以及收集光路搭建五个部分介绍光路搭建的过程。之后对用红光光源替代飞秒光源,用普通透镜和20X显微物镜来验证整个系统的自适应闭环效果。最后,对老鼠肾脏切片荧光标本进行显微成像。关键词:双光子显微成像技术,自适应光学,荧光成像,高分辨率ABSTRACTABSTRACTTwo-photon fluorescence microscopy imaging technology is an important meansand tool for conducting microscopic life science research.Using this technology,youcan observe the fine structure in vivo,and dynamically track biological activities atdifferent scales such as internal tissues,cells,nuclei,proteins,and small molecules.Among them,the study of high temporal and spatial resolution fluorescence microscopyimaging technology in deep tissues is a frontier issue in the current imaging field.Sinceliving biological tissues are usually non-transparent,non-uniform,and anisotropiccomplex three-dimensional structures,both excitation light and emitted fluorescent lightwill undergo significant distortion due to refraction,scattering,absorption,etc.in thebiological tissue.Poor quality.With the aid of adaptive optics,real-time detection andaccurate correction of wavefront distortions generated by biological tissue propagationas described above can be performed,thereby improving spatial resolution and depth ofexcitation light illumination and fluorescence imaging.This article mainly focuses onthe two-photon microscopy imaging system based on adaptive optics.The mainresearch contents include the following:1.The theory of two-photon microscopy imaging technology was studied.Thephysical mechanism of two-photon microscopy,the composition of two-photonmicroscopy imaging system,imaging characteristics,and the basic method of systemoptimization were analyzed in detail to provide a theoretical basis for the design ofsubsequent light paths.In addition,through the analysis of the imaging characteristics,the aberration correction using adaptive optics technology to improve the resolution anddepth of the two-photon microscopy imaging.2.The principle of adaptive optics is studied.The first fifteen Zernike polynomialsand their meanings in optical wavefront errors are derived.The first ten Zernikepolynomials are simulated by matlab.When Zernike polynomials are used to define thewavefront,the PV value and RMS analysis show that in adaptive optics,wavefrontaberrations are usually characterized by RMS.The smaller the RMS,the higher theadaptive closed-loop effect.3.A two-photon microscopy imaging system based on adaptive optics wasdesigned.Based on the above theory,the optical simulation software Zemax was firstsimulated for the illumination light path.Afterwards,the optical path was analyzed by
文档评分
    请如实的对该文档进行评分
  • 0
发表评论
返回顶部

问题、需求、建议

扫码添加微信客服